For Supervisor's use only

2

90309

Level 2 Chemistry, 2004

90309 Describe the structural formulae and reactions of compounds containing selected organic functional groups

Credits: Four 2.00 pm Wednesday 10 November 2004

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the pages provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

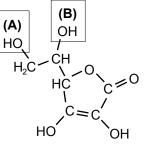
Achievement Criteria	For Assessor's use only	
Achievement	Achievement with Merit	Achievement with Excellence
Describe structures and reactions of organic compounds.	Apply principles of structure and reactivity to organic compounds.	Interpret and explain information about the reactivity and structure of organic compounds.
	Overall Level of Performance	

You are advised to spend 45 minutes answering the questions in this booklet.

Assessor's use only

QUESTION ONE

Complete the following table showing the structural formulae and IUPAC (systematic) names for some organic compounds.


	structural formula	IUPAC name
(a)	OH I H ₃ C — CH ₂ — CH — CH ₃	
(b)	H₃C − CH − CH₂ − C OOH	
(c)		methyl propanoate
(d)		2,4-dichlorobut–1–ene

QUESTION TWO

Vitamin C has the structure shown on the right.

- (a) On the molecule circle the section that would readily react to decolourise bromine water.
- (b) Two of the –OH groups in the molecule have been labelled as (A) and (B).

Classify these –OH groups as primary, secondary or tertiary alcohol groups.

Vitamin C

QUESTION THREE

Assessor's use only

Two common polymers are polypropylene and polyvinyl chloride (PVC). A section of each polymer is shown in the table below. Draw the structural formula for the monomer molecule for each polymer.

	Section of the polymer	Monomer molecule
(a)	polypropylene	
	CH ₂ CH ₂ CH ₂ CH ₂ CH CH CH CH I I I CH ₃ CH ₃ CH ₃ CH ₃	
(b)	polyvinyl chloride (PVC)	
	CH ₂ CH ₂ CH ₂ CH ₂ CH CH CH CH I I I CI CI CI CI	

QUESTION FOUR

(a) Draw the structural formula of the **organic product** in each of the following reactions.

(i)	H ₃ C − C − OH	
(ii)	$H_3C - CH = CH_2 + HCI \rightarrow$	
(iii)	$H_3C-C=CH_2 + H_2O/H^+ \rightarrow$ CH_3	
(iv)	$H_2C - CH_2 - CH_3 + Cr_2O_7^{2-} / H^{\dagger} \longrightarrow$ I OH	

(b) Name the functional group in each of the **products** of reactions (i) to (iv) above.

	Functional group of product		Functional group of product
(i)		(ii)	
(iii)		(iv)	

Draw the structure of the **major** product formed when two molecules of HCl add to limonene (a substance found in citrus fruit).

limonene
$$H_2C$$
 CH_2 H_2C CH_2 H_3C CH_2 CH_2 CH_2

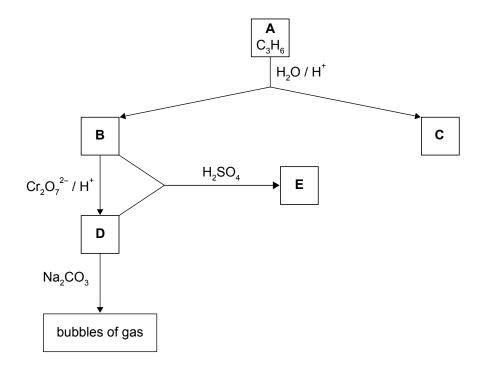
QUESTION SIX

Assessor's use only

(a)	A compound of molecular formula C ₂ H ₂ Cl ₂ can exist as <i>cis–trans</i> (geometrical) isomers. Draw , and name , the <i>cis–trans</i> isomers.
(b)	There is another structural isomer of $C_2H_2CI_2$ that cannot exist as <i>cis–trans</i> isomers. Draw the structural formula for this molecule and explain why this molecule cannot exist as <i>cis–trans</i> isomers while the one you have drawn above in (a) can.

QUESTION SEVEN

Assessor's use only


Chemical tests can be used to distinguish between pairs of compounds.

Identify tests to distinguish between the following pairs of compounds and:

- (i) describe the test to be carried out,
- (ii) describe the expected observations for the test used,
- (iii) clearly explain how the test results can be used to distinguish between the molecules in each pair of compounds and why the test used is a suitable one.

(i)	Test:			
(ii)	Observations:			
(iii)	Explanation:			
buta	noic acid and methylbutan	oate.		
buta (i)				
	Test:			
(i)	Test:			
(i) (ii)	Test:			

An unsaturated compound $\bf A$, C_3H_6 , reacts with water under acidic conditions to form two new products, $\bf B$ and $\bf C$. Product $\bf B$ reacts with acidified potassium dichromate solution to form $\bf D$. Product $\bf D$ reacts with a solution of sodium carbonate producing bubbles of gas. Product $\bf B$ reacts with $\bf D$ in the presence of sulfuric acid and compound $\bf E$ is formed. Compound $\bf E$ has a characteristic smell.

Complete the table below by writing the structural formula and name for each compound $\bf A$, $\bf B$, $\bf C$, $\bf D$ and $\bf E$.

Compound	Structural formula	Name
Α		
В		
С		
D		
E		

Extra paper for continuation of answers if required. Clearly number the question.

Asse	ssor's
use	only

Question number	